Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.348
Filtrar
1.
Anal Chim Acta ; 1301: 342468, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553125

RESUMO

BACKGROUND: Acetone, isoprene, and other volatile organic compounds (VOCs) in exhaled breath have been shown to be biomarkers for many medical conditions. Researchers use different techniques for VOC detection, including solid phase microextraction (SPME), to preconcentrate volatile analytes prior to instrumental analysis by gas chromatography-mass spectrometry (GC-MS). These techniques include a previously developed method to detect VOCs in breath directly using SPME, but it is uncommon for studies to quantify exhaled volatiles because it can be time consuming due to the need of many external/internal standards, and there is no standardized or widely accepted method. The objective of this study was to develop an accessible method to quantify acetone and isoprene in breath by SPME GC-MS. RESULTS: A system was developed to mimic human exhalation and expose VOCs to a SPME fiber in the gas phase at known concentrations. VOCs were bubbled/diluted with dry air at a fixed flow rate, duration, and volume that was comparable to a previously developed breath sampling method. Identification of acetone and isoprene through GC-MS was verified using standards and observing overlaps in chromatographic retention/mass spectral fragmentation. Calibration curves were developed for these two analytes, which showed a high degree of linear correlation. Acetone and isoprene displayed limits of detection/quantification equal to 12 ppb/37 ppb and 73 ppb/222 ppb respectively. Quantification results in healthy breath samples (n = 15) showed acetone concentrations spanned between 71 ppb and 294 ppb, and isoprene varied between 170 ppb and 990 ppb. Both concentration ranges for acetone and isoprene in this study overlap with those reported in existing literature. SIGNIFICANCE: Results indicate the development of a system to quantify acetone and isoprene in breath that can be adapted to diverse sampling methods and instrumental analyses beyond SPME GC-MS.


Assuntos
Butadienos , Hemiterpenos , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Acetona/análise , Expiração , Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/análise
2.
Food Chem ; 447: 139005, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38507948

RESUMO

Hydrogen sulfide (H2S) is known to effectively inhibit the browning of fresh-cut apples, but the mechanism at a metabolic level remains unclear. Herein, non-targeted metabolomics was used to analyze metabolic changes in surface and internal tissues of fresh-cut apple after H2S treatment. The results showed that prenol lipids were the most up-accumulated differential metabolites in both surface and inner tissue of fresh-cut apple during browning process, which significantly down-accumulated by H2S treatment. H2S treatment reduced the consumption of amino acid in surface tissue. Regarding inner tissue, H2S activated defense response through accumulation of lysophospholipid signaling and induced the biosynthesis of phenolic compounds. We therefore propose that H2S inhibited the surface browning of fresh-cut apple by reducing the accumulation of prenol lipids, directly delaying amino acid consumption in surface tissue and indirectly regulating defense response in inner tissue, which provides fundamental insights into browning inhibition mechanisms by H2S.


Assuntos
Hemiterpenos , Sulfeto de Hidrogênio , Malus , Pentanóis , Malus/química , Aminoácidos/farmacologia , Lipídeos/farmacologia
3.
ACS Sens ; 9(3): 1575-1583, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38483350

RESUMO

Monitoring of isoprene in exhaled breath is expected to provide a noninvasive and painless method for dynamic monitoring of physiological and metabolic states during exercise. However, for real-time and portable detection of isoprene, gas sensors have become the best choice for gas detection technology, which are crucial to achieving the goal of anytime, anywhere, human-centered healthcare in the future. Here, we first report a mixed potential type isoprene sensor based on a Gd2Zr2O7 solid electrolyte and a CdSb2O6 sensing electrode, which enables sensitive detection for isoprene with sensitivities of -21.2 mV/ppm and -65.8 mV/decade in the range of 0.05-1 and 1-100 ppm. The sensing behavior of the sensor follows the mixed potential sensing mechanism and was further verified by the electrochemical polarization curves. The significant differentiation between the sensor response to exhaled breath of healthy individuals and simulated breath containing different concentrations of isoprene demonstrates the potential of the sensor for the detection of isoprene in exhaled breath. Simultaneously, monitoring of isoprene during exercise signifies the feasibility of the sensor in dynamic monitoring of physiological indicators, which is not only of great significance for optimizing training and guiding therapeutic exercise intervention in sporting scenarios but also expected to help further reveal the interaction between exercise, muscle, and organ metabolism in medicine.


Assuntos
Testes Respiratórios , Gases , Hemiterpenos , Humanos , Testes Respiratórios/métodos , Butadienos , Biomarcadores
4.
mSystems ; 9(4): e0122523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470040

RESUMO

Ectomycorrhizal fungi establish mutually beneficial relationships with trees, trading nutrients for carbon. Suillus are ectomycorrhizal fungi that are critical to the health of boreal and temperate forest ecosystems. Comparative genomics has identified a high number of non-ribosomal peptide synthetase and terpene biosynthetic gene clusters (BGC) potentially involved in fungal competition and communication. However, the functionality of these BGCs is not known. This study employed co-culture techniques to activate BGC expression and then used metabolomics to investigate the diversity of metabolic products produced by three Suillus species (Suillus hirtellus EM16, Suillus decipiens EM49, and Suillus cothurnatus VC1858), core members of the pine microbiome. After 28 days of growth on solid media, liquid chromatography-tandem mass spectrometry identified a diverse range of extracellular metabolites (exometabolites) along the interaction zone between Suillus co-cultures. Prenol lipids were among the most abundant chemical classes. Out of the 62 unique terpene BGCs predicted by genome mining, 41 putative prenol lipids (includes 37 putative terpenes) were identified across the three Suillus species using metabolomics. Notably, some terpenes were significantly more abundant in co-culture conditions. For example, we identified a metabolite matching to isomers isopimaric acid, sandaracopimaric acid, and abietic acid, which can be found in pine resin and play important roles in host defense mechanisms and Suillus spore germination. This research highlights the importance of combining genomics and metabolomics to advance our understanding of the chemical diversity underpinning fungal signaling and communication.IMPORTANCEUsing a combination of genomics and metabolomics, this study's findings offer new insights into the chemical diversity of Suillus fungi, which serve a critical role in forest ecosystems.


Assuntos
Agaricales , Hemiterpenos , Microbiota , Micorrizas , Pentanóis , Terpenos , Micorrizas/genética , Lipídeos
5.
PeerJ ; 12: e16929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435988

RESUMO

Rosa rugosa, a renowned ornamental plant, is cultivated for its essential oil containing valuable monoterpenes, sesquiterpenes, and other compounds widely used in the floriculture industry. Farnesyl diphosphate synthase (FPPS) is a key enzyme involved in the biosynthesis of sesquiterpenes and triterpenes for abiotic or biotic stress. In this study, we successfully cloned and characterized a full-length FPPS- encoding cDNA identified as RrFPPS1 using RT-PCR from R. rugosa. Phylogenetic analysis showed that RrFPPS1 belonged to the angiosperm-FPPS clade. Transcriptomic and RT-qPCR analyses revealed that the RrFPPS1 gene had tissue-specific expression patterns. Subcellular localization analysis using Nicotiana benthamiana leaves showed that RrFPPS1 was a cytoplasmic protein. In vitro enzymatic assays combined with GC-MS analysis showed that RrFPPS1 produced farnesyl diphosphate (FPP) using isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) as substrates to provide a precursor for sesquiterpene and triterpene biosynthesis in the plant. Additionally, our research found that RrFPPS1 was upregulated under salt treatment. These substantial findings contribute to an improved understanding of terpene biosynthesis in R. rugosa and open new opportunities for advancements in horticultural practices and fragrance industries by overexpression of the RrFPPS1 gene in vivo increased FPP production and subsequently led to elevated sesquiterpene yields in the future. The knowledge gained from this study can potentially lead to the development of enhanced varieties of R. rugosa with improved aroma, medicinal properties, and resilience to environmental stressors.


Assuntos
Hemiterpenos , Compostos Organofosforados , Rosa , Sesquiterpenos , Geraniltranstransferase/genética , Rosa/genética , Filogenia , Estresse Salino , Clonagem Molecular
6.
Arch Insect Biochem Physiol ; 115(2): e22088, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349673

RESUMO

Geranylgeranyl diphosphate synthase (GGPPS) as the short-chain prenyltransferases for catalyzing the formation of the acyclic precursor (E)-GGPP has been extensively investigated in mammals, plants, and microbes, but its functional plasticity is poorly understood in insect species. Here, a single GGPPS in leaf beetle Monolepta hieroglyphica, MhieGGPPS, was functionally investigated. Phylogenetic analysis showed that MhieGGPPS was clustered in one clade with homologs and had six conserved motifs. Molecular docking results indicated that binding sites of dimethylallyl diphosphate (DMAPP), (E)-geranyl pyrophosphate (GPP), and (E)-farnesyl pyrophosphate (FPP) were in the chain-length determination region of MhieGGPPS, respectively. In vitro, recombiant MhieGGPPS could catalyze the formation of (E)-geranylgeraniol against different combinations of substrates including isopentenyl pyrophosphate (IPP)/DMAPP, IPP/(E)-GPP, and IPP/(E)-FPP, suggesting that MhieGGPPS could not only use (E)-FPP but also (E)-GPP and DMAPP as the allylic cosubstrates. In kinetic analysis, the (E)-FPP was most tightly bound to MhieGGPPS than that of others. It was proposed that MhieGGPPS as a multifunctional enzyme is differentiated from the other GGPPSs in the animals and plants, which only accepted (E)-FPP as the allylic cosubstrate. These findings provide valuable insights into understanding the functional plasticity of GGPPS in M. hieroglyphica and the novel biosynthesis mechanism in the isoprenoid pathway.


Assuntos
Besouros , Hemiterpenos , Compostos Organofosforados , Fosfatos de Poli-Isoprenil , Sesquiterpenos , Animais , Farnesiltranstransferase , Cinética , Simulação de Acoplamento Molecular , Filogenia , Mamíferos
7.
PLoS One ; 19(2): e0298148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363776

RESUMO

Sanhua decoction (SHD), a traditional prescription, has long been used in treating ischemic stroke (IS). However, the therapeutic effect of SHD and the associated changes in gut microbiota and short-chain fatty acids (SCFAs) are uncertain. In this study, a rat model of IS was established by the middle cerebral artery occlusion (MCAO). By evaluating the cerebral infarct area and brain tissue pathology, it was found that SHD ameliorated IS-related symptoms in MCAO rats. Using 16S rRNA gene sequencing, we found that SHD reduced abnormally elevated Lactobacillus and opportunistic pathogens such as Desulfovibrio, but increased some beneficial bacteria that produce SCFAs, including Clostridia, Lachnospiraceae, Ruminococcaceae, and Coprococcus. KEGG analysis revealed that SHD regulates several pathways, including D-arginine and D-ornithine metabolism, polyketide sugar unit biosynthesis, and cyanoamino acid metabolism, which are significantly altered in MCAO rats. By gas chromatography-mass spectrometry detection of SCFAs, we found that fecal acetic acid, valeric acid, and caproic acid were significantly increased in MCAO rats, whereas propionic acid and isobutyric acid were decreased. SHD reversed the changes in acetic acid and propionic acid in the model rats and significantly increased fecal butyric acid. In addition, MCAO rats had significantly higher serum levels of acetic acid, butyric acid, isovaleric acid, and valeric acid, and lower levels of caproic acid. Altered serum levels of butyric acid, isovaleric acid, valeric acid, and caproic acid were restored, and the level of isobutyric acid was reduced after SHD administration. Spearman analysis revealed that cerebral infarct area had a strong correlation with Bifidobacterium, Desulfovibrio, Lachnospiraceae, Lactobacillus, acetic acid, valeric acid, and caproic acid. Overall, this study demonstrates for the first time that the effect of SHD on IS may be related to gut microbiota and SCFAs, providing a potential scientific explanation for the ameliorative effect of SHD on IS.


Assuntos
Microbioma Gastrointestinal , Hemiterpenos , Ácidos Pentanoicos , Propionatos , Ratos , Animais , Caproatos , Microbioma Gastrointestinal/fisiologia , Isobutiratos , Infarto da Artéria Cerebral Média/tratamento farmacológico , RNA Ribossômico 16S , Ácidos Graxos Voláteis/metabolismo , Ácido Acético , Ácido Butírico/farmacologia
8.
Macromol Rapid Commun ; 45(7): e2300653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38261808

RESUMO

Herein, a concise, effective, and scalable strategy is reported that the introduction of polar molecules (PMs) (e.g., anisole (PhOMe), phenetole (PhOEt), 2-methoxynaphthalene (NaphOMe), thioanisole (PhSMe), and N,N-dimethylaniline (PhNMe2)) as continuously coordinated neutral ligand of cationic active species in situ generated from the constrain-geometry-configuration-type rare-earth metal complexes A-F/AliBu3/[Ph3C][B(C6F5)4] ternary systems can easily switch the regio- and stereoselectivity of the polymerization of conjugated dienes (CDs, including 2-subsituted CDs such as isoprene (IP) and myrcene (MY), 1,2-disubstituted CD ocimene (OC), and 1-substituted polar CD 1-(para-methoxyphenyl)-1,3-butadiene (p-MOPB)) from poor selectivities to high selectivities (for IP and MY: 3,4-selectivity up to 99%; for OC: trans-1,2-selectivity up to 93% (mm up to 90%); for p-MOPB: 3,4-syndioselectivity (3,4- up to 99%, rrrr up to 96%)). DFT calculations explain the continuous coordination roles of PMs on the regulation of the regio- and stereoselectivity of the polymerization of CDs. In comparison with the traditional strategies, this strategy by adding some common PMs is easier and more convenient, decreasing the synthetic cost and complex operation of new metal catalyst and cocatalyst. Such regio- and stereoselective regulation method by using PMs is not reported for the coordination polymerization of olefins catalyzed by rare-earth metal and early transition metal complexes.


Assuntos
Monoterpenos Acíclicos , Alcenos , Butadienos , Complexos de Coordenação , Hemiterpenos , Metais Terras Raras , Polimerização , Polienos , Catálise
9.
J Am Chem Soc ; 146(6): 3926-3942, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291562

RESUMO

(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase, or IspH (formerly known as LytB), catalyzes the terminal step of the bacterial methylerythritol phosphate (MEP) pathway for isoprene synthesis. This step converts (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP) into one of two possible isomeric products, either isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). This reaction involves the removal of the C4 hydroxyl group of HMBPP and addition of two electrons. IspH contains a [4Fe-4S] cluster in its active site, and multiple cluster-based paramagnetic species of uncertain redox and ligation states can be detected after incubation with reductant, addition of a ligand, or during catalysis. To characterize the clusters in these species, 57Fe-labeled samples of IspH were prepared and studied by electron paramagnetic resonance (EPR), 57Fe electron-nuclear double resonance (ENDOR), and Mössbauer spectroscopies. Notably, this ENDOR study provides a rarely reported, complete determination of the 57Fe hyperfine tensors for all four Fe ions in a [4Fe-4S] cluster. The resting state of the enzyme (Ox) has a diamagnetic [4Fe-4S]2+ cluster. Reduction generates [4Fe-4S]+ (Red) with both S = 1/2 and S = 3/2 spin ground states. When the reduced enzyme is incubated with substrate, a transient paramagnetic reaction intermediate is detected (Int) which is thought to contain a cluster-bound substrate-derived species. The EPR properties of Int are indicative of a 3+ iron-sulfur cluster oxidation state, and the Mössbauer spectra presented here confirm this. Incubation of reduced enzyme with the product IPP induced yet another paramagnetic [4Fe-4S]+ species (Red+P) with S = 1/2. However, the g-tensor of this state is commonly associated with a 3+ oxidation state, while Mössbauer parameters show features typical for 2+ clusters. Implications of these complicated results are discussed.


Assuntos
Hemiterpenos , Proteínas Ferro-Enxofre , Compostos Organofosforados , Domínio Catalítico , Ligantes , Oxirredução , Espectroscopia de Ressonância de Spin Eletrônica , Catálise , Proteínas Ferro-Enxofre/química
10.
Proc Biol Sci ; 291(2015): 20232578, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228178

RESUMO

In the silkmoth Bombyx mori, the role of male sensilla trichodea in pheromone detection is well established. Here we study the corresponding female sensilla, which contain two olfactory sensory neurons (OSNs) and come in two lengths, each representing a single physiological type. Only OSNs in medium trichoids respond to the scent of mulberry, the silkworm's exclusive host plant, and are more sensitive in mated females, suggesting a role in oviposition. In long trichoids, one OSN is tuned to (+)-linalool and the other to benzaldehyde and isovaleric acid, both odours emitted by silkworm faeces. While the significance of (+)-linalool detection remains unclear, isovaleric acid repels mated females and may therefore play a role in avoiding crowded oviposition sites. When we examined the underlying molecular components of neurons in female trichoids, we found non-canonical co-expression of Ir8a, the co-receptor for acid responses, and ORco, the co-receptor of odorant receptors, in long trichoids, and the unexpected expression of a specific odorant receptor in both trichoid sensillum types. In addition to elucidating the function of female trichoids, our results suggest that some accepted organizational principles of the insect olfactory system may not apply to the predominant sensilla on the antenna of female B. mori.


Assuntos
Monoterpenos Acíclicos , Bombyx , Hemiterpenos , Neurônios Receptores Olfatórios , Ácidos Pentanoicos , Receptores Odorantes , Animais , Feminino , Bombyx/metabolismo , Sensilas/fisiologia , Olfato , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Feromônios/metabolismo
11.
Appl Microbiol Biotechnol ; 108(1): 110, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229297

RESUMO

Terpenoids are widely used in the food, beverage, cosmetics, and pharmaceutical industries. Microorganisms have been extensively studied for terpenoid production. In yeast, the introduction of the mevalonate (MVA) pathway in organelles in addition to the augmentation of its own MVA pathway have been challenging. Introduction of the MVA pathway into mitochondria is considered a promising approach for terpenoid production because acetyl-CoA, the starting molecule of the MVA pathway, is abundant in mitochondria. However, mitochondria comprise only a small percentage of the entire cell. Therefore, we hypothesized that increasing the total mitochondrial volume per cell would increase terpenoid production. First, we ascertained that the amounts of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the final molecules of the MVA pathway, were 15-fold higher of the strain expressing the MVA pathway in mitochondria than in the wild-type yeast strain. Second, we found that different deletion mutants induced different mitochondrial volumes by measuring the mitochondrial volume in various deletion mutants affecting mitochondrial morphology; for example,Δmdm32 increased mitochondrial volume, and Δfzo1 decreased it. Finally, the effects of mitochondrial volume on amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) were investigated using mutants harboring large or small mitochondria expressing the MVA pathway in mitochondria. Amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) increased when the mitochondrial volume expanded. Introducing the MVA pathway into mitochondria for terpenoid production in yeast may become more attractive by enlarging the mitochondrial volume. KEY POINTS: • IPP/DMAPP content increased in the strain expressing the MVA pathway in mitochondria • IPP/DMAPP and terpenoid contents are positively correlated with mitochondrial volume • Enlarging the mitochondria may improve mitochondria-mediated terpenoid production.


Assuntos
Compostos Organofosforados , Terpenos , beta Caroteno , Terpenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esqualeno , Hemiterpenos/metabolismo , Mitocôndrias/metabolismo , Ácido Mevalônico/metabolismo
12.
Biosens Bioelectron ; 248: 115998, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176254

RESUMO

The release of isoprene by plants is considered to be an adaptation to the environment. Herein, a highly selective coumarin fluorescent probe (DMIC) was designed for detecting isoprene. When isoprene came into contact with the maleimide of DMIC, an electrophilic addition process took place. The powerful push-pull effect of DMIC was disrupted. Simultaneously, intramolecular charge transfer was initiated. This enabled DMIC to achieve rapid detection of isoprene within 5 min. Furthermore, excellent linearity was observed in the concentration range of 1-560 ppm (R2 = 0.996). A limit of detection is 1.6 ppm. DMIC was applied to in vitro studies of plant release of liberated isoprene. By monitoring the release of isoprene from different tree species throughout the day, the dynamics of isoprene release from plants throughout the day have been successfully revealed. In addition, the release of isoprene varied considerably among different tree species. In particular, the biocompatibility of DMIC allowed for the in vivo detection of isoprene using fluorescence imaging. The results successfully revealed the dynamics of isoprene release in plants under stress. The amount of isoprene that a plant produced increased with the severity of the stress it experienced. This suggested that the level of isoprene content in plants could be used as a preliminary indicator of the physiological health status of plants. This research demonstrates great potential for clarifying signal transduction in biological systems. It provided ideas for further understanding the biology of isoprene.


Assuntos
Técnicas Biossensoriais , Butadienos , Plantas , Hemiterpenos , Cumarínicos
13.
PLoS Pathog ; 20(1): e1011557, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38277417

RESUMO

A proposed treatment for malaria is a combination of fosmidomycin and clindamycin. Both compounds inhibit the methylerythritol 4-phosphate (MEP) pathway, the parasitic source of farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively). Both FPP and GGPP are crucial for the biosynthesis of several essential metabolites such as ubiquinone and dolichol, as well as for protein prenylation. Dietary prenols, such as farnesol (FOH) and geranylgeraniol (GGOH), can rescue parasites from MEP inhibitors, suggesting the existence of a missing pathway for prenol salvage via phosphorylation. In this study, we identified a gene in the genome of P. falciparum, encoding a transmembrane prenol kinase (PolK) involved in the salvage of FOH and GGOH. The enzyme was expressed in Saccharomyces cerevisiae, and its FOH/GGOH kinase activities were experimentally validated. Furthermore, conditional knockout parasites (Δ-PolK) were created to investigate the biological importance of the FOH/GGOH salvage pathway. Δ-PolK parasites were viable but displayed increased susceptibility to fosmidomycin. Their sensitivity to MEP inhibitors could not be rescued by adding prenols. Additionally, Δ-PolK parasites lost their capability to utilize prenols for protein prenylation. Experiments using culture medium supplemented with whole/delipidated human plasma in transgenic parasites revealed that human plasma has components that can diminish the effectiveness of fosmidomycin. Mass spectrometry tests indicated that both bovine supplements used in culture and human plasma contain GGOH. These findings suggest that the FOH/GGOH salvage pathway might offer an alternate source of isoprenoids for malaria parasites when de novo biosynthesis is inhibited. This study also identifies a novel kind of enzyme related to isoprenoid metabolism.


Assuntos
Diterpenos , Fosfomicina/análogos & derivados , Hemiterpenos , Parasitos , Pentanóis , Humanos , Animais , Bovinos , Parasitos/metabolismo , Fosfatos , Terpenos/farmacologia , Terpenos/metabolismo
14.
Mol Biotechnol ; 66(1): 56-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37014586

RESUMO

2-C-methyl-D-erythritol-phosphate cytidylyltransferase (MCT) is a key enzyme in the MEP pathway of monoterpene synthesis, catalyzing the generation of 4- (5'-pyrophosphate cytidine)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol-4-phosphate. We used homologous cloning strategy to clone gene, LiMCT, in the MEP pathway that may be involved in the regulation of floral fragrance synthesis in the Lilium oriental hybrid 'Sorbonne.' The full-length ORF sequence was 837 bp, encoding 278 amino acids. Bioinformatics analysis showed that the relative molecular weight of LiMCT protein is 68.56 kD and the isoelectric point (pI) is 5.12. The expression pattern of LiMCT gene was found to be consistent with the accumulation sites and emission patterns of floral fragrance monoterpenes in transcriptome data (unpublished). Subcellular localization indicated that the LiMCT protein is located in chloroplasts, which is consistent with the location of MEP pathway genes functioning in plastids to produce isoprene precursors. Overexpression of LiMCT in Arabidopsis thaliana affected the expression levels of MEP and MVA pathway genes, suggesting that overexpression of the LiMCT in A. thaliana affected the metabolic flow of C5 precursors of two different terpene synthesis pathways. The expression of the monoterpene synthase AtTPS14 was elevated nearly fourfold in transgenic A. thaliana compared with the control, and the levels of carotenoids and chlorophylls, the end products of the MEP pathway, were significantly increased in the leaves at full bloom, indicating that LiMCT plays an important role in regulating monoterpene synthesis and in the synthesis of other isoprene-like precursors in transgenic A. thaliana flowers. However, the specific mechanism of LiMCT in promoting the accumulation of isoprene products of the MEP pathway and the biosynthesis of floral monoterpene volatile components needs further investigation.


Assuntos
Arabidopsis , Butadienos , Hemiterpenos , Lilium , Fosfatos Açúcares , Lilium/genética , Lilium/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Monoterpenos/metabolismo , Eritritol/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas
15.
Plant Cell Environ ; 47(4): 1099-1117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38038355

RESUMO

Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.


Assuntos
Fotossíntese , Proteômica , Hemiterpenos/metabolismo , Butadienos/metabolismo , Árvores/metabolismo , Pentanos/metabolismo , Folhas de Planta/metabolismo
16.
Bioresour Technol ; 393: 130098, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040299

RESUMO

Isoprene has numerous industrial applications, including rubber polymer and potential biofuel. Microbial methane-based isoprene production could be a cost-effective and environmentally benign process, owing to a reduced carbon footprint and economical utilization of methane. In this study, Methylococcus capsulatus Bath was engineered to produce isoprene from methane by introducing the exogenous mevalonate (MVA) pathway. Overexpression of MVA pathway enzymes and isoprene synthase from Populus trichocarpa under the control of a phenol-inducible promoter substantially improved isoprene production. M. capsulatus Bath was further engineered using a CRISPR-base editor to disrupt the expression of soluble methane monooxygenase (sMMO), which oxidizes isoprene to cause toxicity. Additionally, optimization of the metabolic flux in the MVA pathway and culture conditions increased isoprene production to 228.1 mg/L, the highest known titer for methanotroph-based isoprene production. The developed methanotroph could facilitate the efficient conversion of methane to isoprene, resulting in the sustainable production of value-added chemicals.


Assuntos
Metano , Methylococcus capsulatus , Metano/metabolismo , Methylococcus capsulatus/genética , Methylococcus capsulatus/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Hemiterpenos/metabolismo , Butadienos/metabolismo
17.
Appl Environ Microbiol ; 89(10): e0121823, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815338

RESUMO

Enzyme stability is often a limiting factor in the microbial production of high-value-added chemicals and commercial enzymes. A previous study by our research group revealed that the unstable isoprene synthase from Ipomoea batatas (IspSib) critically limits isoprene production in engineered Escherichia coli. Directed evolution was, therefore, performed in the present study to improve the thermostability of IspSib. First, a tripartite protein folding system designated as lac'-IspSib-'lac, which could couple the stability of IspSib to antibiotic ampicillin resistance, was successfully constructed for the high-throughput screening of variants. Directed evolution of IspSib was then performed through two rounds of random mutation and site-saturation mutation, which produced three variants with higher stability: IspSibN397V A476V, IspSibN397V A476T, and IspSibN397V A476C. The subsequent in vitro thermostability test confirmed the increased protein stability. The melting temperatures of the screened variants IspSibN397V A476V, IspSibN397V A476T, and IspSibN397V A476C were 45.1 ± 0.9°C, 46.1 ± 0.7°C, and 47.2 ± 0.3°C, respectively, each of which was higher than the melting temperature of wild-type IspSib (41.5 ± 0.4°C). The production of isoprene at the shake-flask fermentation level was increased by 1.94-folds, to 1,335 mg/L, when using IspSibN397V A476T. These findings provide insights into the optimization of the thermostability of terpene synthases, which are key enzymes for isoprenoid production in engineered microorganisms. In addition, the present study would serve as a successful example of improving enzyme stability without requiring detailed structural information or catalytic reaction mechanisms.IMPORTANCEThe poor thermostability of IspSib critically limits isoprene production in engineered Escherichia coli. A tripartite protein folding system designated as lac'-IspSib-'lac, which could couple the stability of IspSib to antibiotic ampicillin resistance, was successfully constructed for the first time. In order to improve the enzyme stability of IspSib, the directed evolution of IspSib was performed through error-PCR, and high-throughput screening was realized using the lac'-IspSib-'lac system. Three positive variants with increased thermostability were obtained. The thermostability test and the melting temperature analysis confirmed the increased stability of the enzyme. The production of isoprene was increased by 1.94-folds, to 1,335 mg/L, using IspSibN397V A476T. The directed evolution process reported here is also applicable to other terpene synthases key to isoprenoid production.


Assuntos
Escherichia coli , Hemiterpenos , Escherichia coli/metabolismo , Hemiterpenos/metabolismo , Butadienos/metabolismo , Temperatura , Antibacterianos/metabolismo , Estabilidade Enzimática
18.
Proc Natl Acad Sci U S A ; 120(41): e2309536120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782800

RESUMO

Isoprene is emitted by some plants and is the most abundant biogenic hydrocarbon entering the atmosphere. Multiple studies have elucidated protective roles of isoprene against several environmental stresses, including high temperature, excessive ozone, and herbivory attack. However, isoprene emission adversely affects atmospheric chemistry by contributing to ozone production and aerosol formation. Thus, understanding the regulation of isoprene emission in response to varying environmental conditions, for example, elevated CO2, is critical to comprehend how plants will respond to climate change. Isoprene emission decreases with increasing CO2 concentration; however, the underlying mechanism of this response is currently unknown. We demonstrated that high-CO2-mediated suppression of isoprene emission is independent of photosynthesis and light intensity, but it is reduced with increasing temperature. Furthermore, we measured methylerythritol 4-phosphate (MEP) pathway metabolites in poplar leaves harvested at ambient and high CO2 to identify why isoprene emission is reduced under high CO2. We found that hydroxymethylbutenyl diphosphate (HMBDP) was increased and dimethylallyl diphosphate (DMADP) decreased at high CO2. This implies that high CO2 impeded the conversion of HMBDP to DMADP, possibly through the inhibition of HMBDP reductase activity, resulting in reduced isoprene emission. We further demonstrated that although this phenomenon appears similar to abscisic acid (ABA)-dependent stomatal regulation, it is unrelated as ABA treatment did not alter the effect of elevated CO2 on the suppression of isoprene emission. Thus, this study provides a comprehensive understanding of the regulation of the MEP pathway and isoprene emission in the face of increasing CO2.


Assuntos
Ozônio , Populus , Dióxido de Carbono/metabolismo , Difosfatos/metabolismo , Fotossíntese , Hemiterpenos , Butadienos/farmacologia , Butadienos/metabolismo , Plantas/metabolismo , Ozônio/metabolismo , Pentanos/metabolismo , Folhas de Planta/metabolismo , Populus/genética , Populus/metabolismo
19.
Environ Sci Technol ; 57(38): 14182-14193, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708377

RESUMO

Recent studies have shown that instantaneous gas-particle equilibrium partitioning assumptions fail to predict SOA formation, even at high relative humidity (∼85%), and photochemical aging seems to be one driving factor. In this study, we probe the minimum aging time scale required to observe nonequilibrium partitioning of semivolatile organic compounds (SVOCs) between the gas and aerosol phase at ∼50% RH. Seed isoprene SOA is generated by photo-oxidation in the presence of effloresced ammonium sulfate seeds at <1 ppbv NOx, aged photochemically or in the dark for 0.3-6 h, and subsequently exposed to fresh isoprene SVOCs. Our results show that the equilibrium partitioning assumption is accurate for fresh isoprene SOA but breaks down after isoprene SOA has been aged for as short as 20 min even in the dark. Modeling results show that a semisolid SOA phase state is necessary to reproduce the observed particle size distribution evolution. The observed nonequilibrium partitioning behavior and inferred semisolid phase state are corroborated by offline mass spectrometric analysis on the bulk aerosol particles showing the formation of organosulfates and oligomers. The unexpected short time scale for the phase transition within isoprene SOA has important implications for the growth of atmospheric ultrafine particles to climate-relevant sizes.


Assuntos
Poluentes Atmosféricos , Hemiterpenos , Material Particulado , Butadienos , Compostos Orgânicos , Aerossóis
20.
Plant Biol (Stuttg) ; 25(6): 981-993, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37565537

RESUMO

In Ficus septica, the short-term control of isoprene production and, therefore, isoprene emission has been linked to the hormone balance between auxin (IAA) and jasmonic acid (JA). However, the relationship between long-term changes in isoprene emission and that of plant hormones remains unknown. This study tracked isoprene emissions from F. septica leaves, plant hormone concentrations and signalling gene expression, MEP pathway metabolite concentrations, and related enzyme gene expression for 1 year in the field to better understand the role of plant hormones and their long-term control. Seasonality of isoprenes was mainly driven by temperature- and light-dependent variations in substrate availability through the MEP route, as well as transcriptional and post-transcriptional control of isoprene synthase (IspS). Isoprene emissions are seasonally correlated with plant hormone levels. This was especially evident in the cytokinin profiles, which decreased in summer and increased in winter. Only 4-hydroxy-3-methylbut-2-butenyl-4-diphosphate (HMBDP) exhibited a positive connection with cytokinins among the MEP metabolites examined, suggesting that HMBDP and its biosynthetic enzyme, HMBDP synthase (HDS), play a role in channelling of MEP pathway metabolites to cytokinin production. Thus, it is probable that cytokinins have potential feed-forward regulation of isoprene production. Under long-term natural conditions, the hormonal balance of IAA/JA-Ile was not associated with IspS transcripts or isoprene emissions. This study builds on prior work by revealing differences between short- and long-term hormonal modulation of isoprene emissions in the tropical tree F. septica.


Assuntos
Ficus , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Estações do Ano , Ficus/genética , Ficus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hemiterpenos/metabolismo , Butadienos/metabolismo , Citocininas/metabolismo , Hormônios/metabolismo , Folhas de Planta/metabolismo , Pentanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...